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Abstract—Estimating human pose keypoints from a monocular
video is a challenging task, especially in agile environments. Most
of the previous research works use high-resolution inputs with
ample 3D groundtruth to train their model. In this work, we
propose a unique solution that can efficiently estimate the 3D pose
of ice-hockey players, which ultimately helps in action recognition
and analytics of the players without 3D pose groundtruth data.
We further propose a ’teacher-student’ modeling of 3D networks,
to counter the ill-poised problem of 3D ground truth data scarcity.
Feeding in our fine-tuned model’s 2D predictions, we acquire
3D predictions from the ‘Teacher’ network, which serves as the
groundtruth for our ‘Student’ network, forming a feedback loop
of refinement and predictions. In this work, a novel student
estimator network is proposed to induce inductive bias into
transformers. Experimentation with various 2D and 3D pose
estimators has been done. A modular architecture has been
proposed that gives robust results irrespective of occlusions and
depth ambiguities. The qualitative results of the implemented
2D and 3D pose estimators can be viewed from https://pose-
estimation-videos/.

Index Terms—Pose Estimation, Sports Analysis, Convolutional
Neural Networks, Transformers

I. INTRODUCTION

Human action recognition has been one of the most re-
searched problems in computer vision. The most successful
approaches model this problem as a function of pose estima-
tion, based on the keypoint representation of human joints.
Pose Estimation, in general, refers to predicting the pose of
an entity (humans, in most cases), and helps to determine
their physical orientation with respect to an environment. This
plays a vital role in sports analytics, in estimating the ‘correct
pose’ of sportsmen to decode their style of play, analyze
their actions, avoid injuries, plot their activities, and for a
gamut of other use cases. Vision-based predictions of poses are
especially relevant, due to their minimally invasive approach
and methodology.

But, there exist certain constraints in vision settings, which
include occlusion, foreshortening, shadows, depth ambiguity,
and misdirection which results in inconsistent pose estimates,
especially in uncontrolled agile environments. This is easily
observed in fast-paced team sports such as Ice-hockey, basket-
ball, soccer, rugby, etc., where there exist several constraints
to estimate the relevant pose of a player. This has proven to
be an ill-poised problem in vision.
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In our work, we study the different approaches to mitigate
this, by an end-to-end implementation and comparative study
of novel state-of-the-art architectures for 2D Pose Estimation.
To this end, we utilize a novel Ice-Hockey Dataset, which
contains manually annotated 2D ground truth keypoints and
bounding boxes, sampled at 30 frames per second. We opt
for the top-down approach (human bounding-box detection
followed by pose estimation) as it has proven to be the most
efficient and handpick four models [1]–[4] based on our use-
case.

In the 3D space, existing approaches for specific use cases
fine-tune a pre-trained model, if target 3D keypoints are
available. But, for our dataset, there were no 3D ground truth
targets available during the time of this work. To overcome this
constraint, we formulate a unique approach using “Teacher-
Student” networks, whereby, a state-of-the-art network acts
as the Teacher, whose predictions are fed as the groundtruth
to the relatively under-performing Student network, creating
a feedback loop of learning. Our novelty lies in designing
a ‘Transformer-Convolution’ (Trans-Conv) embedded archi-
tecture for the Student network, which models 3D keypoints
based on both transformer-based and convolution-based archi-
tectures.

Our approach also overcomes another bottleneck in vision,
which is the unavailability of high-fidelity ground truth annota-
tions for supervision. This is especially predominant in manual
annotations of monocular broadcast videos, due to motion
blurring and constant occlusions. Our architecture factors in
the temporal domain (receptive field > 1) [5], mitigating
both these constraints, by extrapolating the poses across the
sampled frames to account for occlusion and blurring. To
summarize our contributions:

• We pursue a comparative study of top-down 2D Pose
estimation architectures,

• We model the 3D space as a ‘Student-Teacher’ relation,
• We propose a novel 3D Pose estimation architecture

(Trans-Conv), and
• We utilize a novel Ice-hockey dataset with annotated

bounding boxes and keypoint coordinates.

The rest of the paper is structured as follows. In Section
II, previous research works pertaining to pose estimation and
sports analytics are discussed. In Section III and IV, the
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adapted 2D and 3D pose estimation techniques are explained
in detail. In Section V, the proposed architecture is explained.
The dataset and metrics used in this work are briefed in
Section VI and VII. Then, the experimentation done for 2D
and 3D pose estimation techniques is explained in Section
VIII. Finally, the work is concluded in Section IX along with
the future works in Section X.

II. RELATED WORKS

Human Pose estimation is a fundamental problem in com-
puter vision that has been researched for a long time. Classical
approaches to pose estimation include pictorial structures mod-
els [6] and Flexible mixture-of-parts [7]. These frameworks
broadly use tree-based probabilistic graphical approaches to
model the spatial relationships between different joints. Other
classical approaches involve extracting important features
through various feature extraction techniques such as con-
tour detection, color histograms, and histogram-of-gradients
(HOG) [8]. However, these approaches were not able to handle
occlusion and model the spatial information effectively.

The advent of deep learning and convolutional neural net-
works helped in efficient feature encoding and better general-
ization. Hence, a multitude of works has been conducted on the
use of deep learning approaches for pose estimation. Toshev
et al. [9] initially formulated pose estimation as a regression
problem of finding body joints, and used CNNs to estimate the
poses. Pischulin et al. [10] followed a bottom-up approach by
detecting all the keypoints first using CNNs, and then using
ILP to cluster the keypoints. Newell et al. [11] was the first to
use a multi-stage architecture where each stage consisted of
repeated down and upsampling layers with skip connections
[12] to extract as much information as possible. Subsequently,
a lot of architectures [1], [2], [13], [14] use the multi-stage
technique and follow a top-down approach.

Recently, transformer architectures have gained a lot of
traction in various computer vision tasks. Most models [4],
[15], [16] incorporate CNN backbones to extract features and
then employ transformer encoder and/or decoder layers to
refine the features. On the other hand, HRFormer [17] and
ViTPose [18] directly use transformers to extract features and
predict keypoints.

In the 3D pose estimation space, several attempts have been
made to extrapolate 2D keypoint coordinates into 3D, either
through multi-view geometry [19] or Temporal Convolutions
[5]. [19] uses 2D poses from multi-view images to obtain 3D
poses and camera geometry using Epipolar geometry. [5] use
an end-to-end Temporal-Convolutional Neural architecture to
predict 3D poses from videos, using self-supervised training.
Yujun et al. [20] utilize a Graph-based Convolutional Network,
to explicitly incorporate human body dimensions into 3D
predictions for plausible results. [21], following a similar
graph-based approach, predicts 3D keypoints based on the
correlation between each individual keypoint with all others,
to model occlusion.

Recently, Transformer-based approaches to vision have be-
come predominant since their widespread success in Natural

Language Processing tasks, like BERT (Bi-directional Encoder
Representations from Transformers) [22], GPT (Generative
Pre-trained Transformer) [23], and Dall-E [24]. A range of
vision tasks including Classification [25], Detection [26],
Segmentation [27], Tracking [28]–[30], and Pose Estimation
[4], [31], [32] have achieved SOTA results with Transformer-
based architectures. This motivated us to also leverage a self-
attention-based neural architecture rather than just Convolu-
tions for 3D Pose Estimation.

A. Pose estimation for Ice-hockey

Multi-stage architectures following the top-down approach
have shown great potential in ice-hockey. Fani et al. use a
stacked hourglass network to predict the 2D keypoints [33] and
subsequently integrate it with a feature transformer to perform
action recognition [34]. Furthermore, Neher et al. [35] use 2
stacked hourglass networks, one pretrained on 16 joints and
another untrained to find out the poses of hockey players along
with their sticks (18 joints). More recently, McNally et al.
[36] incorporates neural architecture search to design efficient
pose estimation and accelerate the search using a novel weight
transfer method.

III. 2D POSE ESTIMATION

A. MultiStage Pose Network

Multi-Stage Pose Networks [1] adopt the top-down ap-
proach in two steps. In the first step, manual annotations of all
the players on the rink are used to crop the input frames and
create multiple images consisting of a single person. The pose
estimation network then uses repeated down and up-sampling
to continuously refine the estimation of poses. This network
mainly proposes three major design improvements on other
multi-stage networks.

The first one is the equal channel width design followed
in all the networks. All the existing networks use the same
number of channels in each level of a downsampling module.
However, this reduces the size of the feature map as we go
down a single stage, making it more difficult to capture rele-
vant information. To solve this problem, this network doubles
the number of channels(convolutional kernels) at every level
of a downsampling module, maintaining the size of the feature
map throughout the stage. This helps the model capture more
information in the downsampling module, resulting in better
localization of keypoints.

The second improvement made by this architecture is the
cross-stage feature aggregation. This network enables us to
propagate the features extracted during the initial stages by
aggregating them with the features in successive stages. This
helps in retaining a lot of information without adding a lot of
layers, making the model more robust and foolproof.

The third and most important improvement made by the
model is the coarse-to-fine supervision. At the end of every
stage, the outputs are converted into gaussian heatmaps and
compared with ground truth heatmaps to refine the localization
accuracy. In this network, they perform this intermediate
supervision at every stage using decreasing gaussian kernel



sizes (instead of using same size kernels at every stage) as
this gives a more accurate estimate of the features extracted.

B. High Resolution Network

High Resolution Network [2] is a multi-stage pose esti-
mation network that focuses on producing and maintaining
accurate high-resolution relationships. This network starts by
extracting features at a higher resolution and then goes on
reducing the resolution as we go deeper into the architec-
ture. The one unique aspect of this network is the parallel
connections across different resolutions, in comparison to
the serial connections that are used in other pose estimation
architectures. These parallel connections help in effectively
maintaining the high-resolution features extracted at the start
of the network without losing important information. The other
differentiating factor of this model from other existing models
is the repeated multi-scale fusion across different resolutions
of a single stage. This novel technique aggregates features
from different resolutions by either upsampling(using nearest
neighbor interpolation followed by 1x1 convolutions) or down-
sampling(using 3x3 strided convolutions). This concatenation
of features within a single stage helps in producing refined
and robust representations.

C. Distribution-Aware coordinate Representation of Keypoint

The state-of-the-art pose estimation models do not directly
take the 2D coordinates of each joint as their input and predict
2D coordinates for every keypoint in a given image. This is
mainly because the 2D coordinates do not contain any spatial
and contextual information, making pose estimation extremely
challenging. Hence, all the existing networks convert these 2D
coordinates to heatmaps using a gaussian kernel to gain some
much-needed spatial information. This work [3] focuses on
improving this encoding and subsequent coordinate decoding
part(after the predictions made by the network) and provides
a more principled distribution-aware method.

The standard coordinate encoding methods downsample
bounding boxes to a smaller dimension, transforming the
ground-truth coordinates accordingly. This downsampling is
defined as shown in equation 1.

g′ = (u′, v′) = g/λ = (u/λ, v/λ) (1)

In equation 1, g = (u, v) as the ground-truth coordinate
and λ is the downsampling ratio. After performing this down-
sampling, standard methods generally quantize these coordi-
nates using the floor or the ceil function to facilitate kernel
generation. However, this causes an inaccurate and biased
representation because of quantization error. This work solves
that problem by eliminating the quantization step and placing
the center of the heatmap at the downsampled coordinate g′.

The standard coordinate decoding methods find the co-
ordinates of the maximal and second maximal activation.
The joint location is then predicted by shifting the location
of the maximal activation 0.25 pixels towards the second
maximal activation. This shifting is done to compensate for
the quantization error. However, this is an empirical method

that is found to have success but does not have any intuition
behind it. Also, the predicted heatmap is not exactly gaussian
in nature and hence, the point with the maximal activation
may not be estimated accurately. Hence, this work proposes
a theoretically sound method to explore the entire heatmap
and find the underlying maximal activation by modulating the
heatmap to make it gaussian and then using that fact along
with the Taylor series to find the actual coordinates of the
keypoint.

D. TransPose

This network [4] leverages the recent success of trans-
formers in computer vision tasks and replicates it in pose
estimation. More specifically, this network uses a common
CNN backbone such as ResNet or HRNet to extract the
features from the input image. The extracted features are then
passed through N transformer encoder layers where each layer
consists of a multi-self-attention head, layer normalization,
and feed-forward neural networks. The attention layers help in
capturing long-range relationships and reveal the dependencies
that determine the location of the maximal activation. The
N different attention layers capture different positions of
maximal activation corresponding to different joints. The final
attention layer acts as an aggregator, which collects contri-
butions from image clues and forms the maximum positions
of keypoints. The output from the final encoder layer is then
passed through a regression head to find the heatmap for every
keypoint.

IV. 3D POSE ESTIMATION

A. Multi-Hypothesis Former

Li et al. [32] proposed MHFormer which leverages vision
transformer networks and the key idea is to learn spatio-
temporal representation of pose hypotheses and is done using a
three-stage process. It starts by creating multiple initial repre-
sentations, then self-communicating which is then followed by
cross-communicating between the hypotheses to get accurate
predictions.

In the first stage, Multi-Hypotheses Generation (MHG) is
done where the intrinsic structure information of the human
joints is modeled and several multi-level features are gener-
ated in the spatial domain. Every single-hypothesis feature
is refined by the second stage, the Self-Hypotheses Refine-
ment (SHR) stage. The SHR consists of two blocks- Multi-
Hypotheses Self Attention (MHSA) and Multi-Layer Percep-
tron (MLP). In MHSA, feature enhancement is accomplished,
by passing messages within each hypothesis, and the MLP
exchanges information across the generated hypothesis from
MHG. These different hypotheses are then merged to get a
converged hypothesis which is then diverged again to generate
multiple hypotheses.

The third stage, Cross-Hypotheses Interaction (CHI) is in-
troduced here to enhance the accuracy by leveraging the infor-
mation between different generated hypotheses. It uses Multi-
Hypothesis Cross Attention (MHCA) that cross-communicates



with various hypotheses for better interaction modeling. Fol-
lowing MHCA, an MLP is used just like after MHSA, to
merge all the diverse hypotheses. The high performance of
the MHFormer network comes with the high computational
cost of the network.

B. Strided Transformer Encoder
Li et al. [31] proposed STE which leverages a sequence

of 2D pose data as input and outputs the target 3D pose.
It uses two transformer encoders to capture the global and
local contexts of the input 2D joint data. Firstly, position
embedding on the input 2D poses is done and is fed to the
Vanilla Transformer Encoder (VTE) where Multi-Head Self-
Attention and a Convolutional Feed Forward Network (CFFN)
are used to capture the long-range dependencies of the 2D pose
sequences.

The output of the VTE is passed as input to the Strided
Transformer Encoder (STE) which uses the same MHSA as
the VTE but has tweaked the vanilla CFFN. The feed-forward
network used in STE has 1D convolution in place of the fully
connected layers with a striding factor of S. This tweak in the
STE helps to merge the sequences of the nearby poses and
improves capturing the local context of the 2D poses. The
output of the STE block is then connected to the regression
head which gives the reconstructed target 3D pose.

C. Graph Attention Spatio-Temporal Network
Liu et al. [21] proposed a graph-based architecture to

learn kinematic connections, constraints, and symmetry of
humans by capturing the temporal and spatial information
using attention mechanisms. The architecture consists of three
major modules- temporal convolutional layers, the local spa-
tial attention graph, and the global spatial attention graph.
Considering the input 2D pose as a graph, the pose joints
are represented as the nodes, and the lines that connect the
skeletons are the edges of the graph.

Given a 2D sequence of poses, firstly, convolution is done
and is sent to the graph attention block, which consists of the
local and global spatial attention graph. This is followed by
temporal convolution. This cycle is then done multiple times
until the final 3D pose is obtained from the sequence of 2D
poses. The temporal convolution consists of convolutions and
dilation which ultimately increases the receptive field without
increasing the number of weight parameters by inducing gaps
in the kernel.

The local spatial attention graph captures the correlation
between each and every vertice (the 2D joint pose) with
its corresponding vertices. The global spatial attention graph
captures the correlation of every vertice with every other
vertice of the human 2D pose. This helps in capturing the
global pose context and makes the pose estimation robust to
occlusions and depth ambiguity.

V. OUR METHODOLOGY

In this section, the modular components of the proposed
human pose estimation technique are explained meticulously.
The overview of the proposed network is shown in Figure 1.

Fig. 1. Overview of the Adapted Technique

First, to estimate the 2D pose of the players for our custom
dataset, we optimized the four state-of-the-art (SOTA) 2D pose
estimation networks explained in Section III. We fine-tuned
these SOTA models for our ice-hockey dataset and compared
the performance and robustness of these models.

Then the obtained 2D pose keypoints of each player are
fed as input to the 3D pose estimator module. The 3D pose
estimator module is shown in Figure 2.

Fig. 2. Overview of the Adapted Technique

In 3D pose estimation, the unavailability of 3D Ground
Truth Keypoints to supervise training is an ill-poised problem.
Since our dataset falls under this category and doesn’t have 3D
annotations, we had to train our network without 3D ground
truth pose keypoints. Thus, we came up with a teacher-student
estimator technique where the input frames (from the ice-
hockey dataset) were inferred on the teacher estimator network
which was trained on the Human3.6M dataset [37]. These
inferred 3D pose keypoints were fed as input to the student
estimator network along with the 2D poses generated using
our dataset as groundtruth information to train our student
estimator. We considered both Graph-based and Transformer-
based architectures as our teacher and student estimators,
including the architectures, explained in Section IV.

One caveat with the Transformer-based approach is the
lack of ‘Inductive Bias’, as stated by Dosovitskiy et al.
[25], whereby, only MLP layers are local and translationally
equivariant, while the self-attention layers are global which
doesn’t model the two-dimensional neighborhood structure
of images that Convolutional Neural Nets [38] extend into
each layer of their architecture. This is overcome by pre-
training Transformers on a large corpus of data and fine-
tuning on a smaller corpus, which has proven to surpass vanilla
convolution-based approaches.

To model the Student network, based on our experiments,
we found that the Transformer-based architecture has a better
computational complexity, while the Graph Convolution-based
architecture outperforms in precision (MPJPE). This presents
a unique scenario of trade-offs, where both factors tend to
be integral for a holistic 3D Pose prediction model. Our
goal is to design a student architecture whose objective is
to outperform both vanilla Transformer-based and vanilla
Graph Convolution-based architectures. To this extent, we
propose a hybrid architecture (Trans-Conv), which aims to



extract the best from both, by the introduction of a 3-layer
Temporal Convolutional block in parallel to the 3-layer Strided
Transformer block in [31]. This is a two-pronged solution to
both achieving an ensemble model and inducing inductive bias
into our Student Network.

‘Trans-Conv’ introduces ‘sliced convolutions’ to the regular
Attention-FeedForward Transformer architecture. Inspired by
[5], we propose a 3-block Convolutional layer as shown in
Figure 3 which shares features with Strided Transformer in
[31]. Each block consists of two one-dimensional convolution
layers followed by Batch Normalization and Relu activation.
To match the dimensions of the output tensors from these
blocks, we apply Maxpooling along the residual connection.

We train this network on Human3.6M dataset, following
the training scheme as outlined in [31] and [5], training on
5 subjects (S1, S5, S6, S7, S8) and testing on 2 subjects
(S9, S11). Both the Transformer and the Convolutional layer
are trained with shared weights, as this was determined em-
pirically to improve the performance of the network, rather
than a separate training scheme. We found better results using
the AdamW optimizer with Amsgrad, training with an initial
learning rate of 1e-3, with a 0.95 decay every epoch and a 0.5
decay every 5th epoch, as followed in [31]. We train for 50
epochs, followed by a refinement scheme as adopted in [20].
Finally, the prediction maps from both the transformer layer
and the convolutional layer are passed together into a pose
regression head to regress the predicted keypoints.

For 3D pose estimation, the default loss metric followed
across the literature is Mean Per Joint Position Error (MPJPE),
also called Protocol 1, which we adopt in our work. We
capture the single target frame scale loss Lc, which minimizes
the distance between estimated 3D pose X ∈ RJ×3 and the
ground truth Y ∈ RJ×3, as shown in Equation 2.

Lt =

J∑
i=1

||Yi −Xi||TCN
2 (2)

Since our proposed network is an additional layer added to
the existing architecture in [12], we model the total loss as the
sum of losses from VTE, STE, and our proposed TCN layer,
as shown in equation 3.

L = λvLv + λsLs + λtLt (3)

In equation 3, λv, λs, λt corresponds to the weighing fac-
tors. Once the 3D pose is obtained in the student estimator, the
obtained 3D pose keypoints were fed into a pose refinement
module. 3D poses can be represented in two ways- as the
root coordinates (x’, y’) obtained from the estimator or by
taking the image coordinates and concatenating them with
the average depth values from the 3D pose estimator. Both
these representations have advantages and disadvantages, for
example, the latter representation heavily depends on the 2D
pose estimated from the 2D estimator. Therefore, we have
captured both representations and taken a weighted average
of these representations, and the resultant output is our final
3D refined pose.

VI. DATASET

A. H3.6M Dataset

Human3.6M dataset [37] is, to the best of our knowledge,
currently the largest publicly available dataset for human
3D pose estimation. The dataset consists of 3.6 million im-
ages featuring 7 professional actors performing 15 everyday
activities such as walking, eating, sitting, making a phone
call, and engaging in a discussion. 2D joint locations and
3D groundtruth positions are available, as well as projection
(camera) parameters and body proportions for all the actors.

Fig. 4. H3.6M dataset

B. Ice-hockey Dataset

The dataset consists of broadcast video sequences and their
corresponding 2D pose estimation data. Some of the frames
obtained from the broadcast video of the hockey dataset can
be visualized in figure 5.

Fig. 5. Ice-hockey dataset

The dataset consists of a total of 10 games, each sequence
recorded at 30 fps and encompasses a total of 9000 frames.
Each frame in the dataset is manually annotated with 17
keypoints per player.

VII. METRICS

A. Mean Per Joint Position Error

Mean Per Joint Position Error (MPJPE) is a metric that is
widely used for evaluation of pose estimation, which is the
L2 distance averaged over all joints. The MPJPE metric is the
root-relative Euclidean error averaged over all joints and poses.
In a relative root pose, the hip (the root joint) is positioned at
the origin. In the evaluation process, we have used MPJPE as
a metric for 3D pose estimation.

B. Custom Metric Name

We used the PCK metric to find out the accuracy of
our models. We essentially find out the Manhattan distance
between the predicted and ground-truth keypoints, and check



Fig. 3. Novel teacher estimator network

if it is lesser than a threshold (20 in our case). The threshold
value was found by doing a grid search over all values from
1 to 100. Additionally, in order to prevent occlusion from
skewing our model’s performance, we filter out the occluded
points by using the confidence score of each prediction and
consider prediction only if confidence of prediction is > 0.6.

(a) HRNet (b) DARK

(c) MSPN (d) TransPose-H

Fig. 6. Inference of the implemented 2D pose estimators without Occlusion

VIII. EXPERIMENTATION

A. 2D Pose Estimation

(a) HRNet (b) DARK

(c) MSPN (d) TransPose-H

Fig. 7. Inference of the implemented 2D pose estimators with Occlusion

All of our experiments were conducted using an NVIDIA
Geforce RTX 2070 GPU with 8 gigs of RAM. All the 2D pose
estimation models were fine-tuned using the pretrained COCO



[39] models for 10 epochs. Because of memory and hardware
constraints, we were unable to perform extensive experiments
and could only use a batch size of 8. The input size of all the
models was (192, 256).

In order to perform all our experiments, we used a 2-
stage MSPN, HRNet-W48, DARK with HRnet-W32 as the
backbone and TransPose with HRNet-W48 as the feature
extractor. Furthermore, for MSPN, we used SGD [40] as our
optimizer with a learning rate of 1e-2, momentum of 0.9, and
a weight decay of 1e-5. As for all the other models, we used
Adam [41] as our optimizer with a learning rate of 1e-3.

Table I shows the training and validation per joint accuracy
obtained from the network trained from scratch.

B. 3D Pose Estimation

Considering we don’t have groundtruth data for the 3D
joints of the players, we implemented a couple of 3D pose
estimation algorithms trained on the H36M dataset [37]. We
have tested a couple of 3D poses estimation approaches to
finalize which estimator can act as a teacher and student. Some
of the qualitative experimentation results are shown below for
the implemented 3D pose estimators.

Fig. 9. Inference of the implemented 3D pose estimators

In Figure 9, the left image corresponds to the input im-
age for which inference was done using various 3D pose
estimators. The center-top image corresponds to the novel
”Trans-Conv” network, right-top corresponds to MHFormer,
center-bottom corresponds to GASTNet and the right-bottom
corresponds to the STE network.

(a) MPJPE Curve (b) Validation Loss

Fig. 10. MPJPE Curve and loss of the novel architecture

TABLE II
TOTAL AND PER JOINT ACCURACY OF THE FINE-TUNED NETWORKS

Model Receptive Field MPJPE (mm)
Hossain et al. [2] 27 frames 58.3

Cai et al. [3] 27 frames 48.8
Pavllo et al. [4] 27 frames 48.6
Chen et al. [5] 27 frames 48.3

Wenhao et al. [1] 27 frames 46.9
Ours (Trans-Conv) 27 frames 47.9

Based on the experimentations conducted on various 3D
pose estimators, we have observed that graph attention blocks
combined with convolution layers model long-range temporal
dependencies, thereby handling occlusions and increasing the
robustness of our ground truths better when compared to other
pose estimators. Thus, we have decided to use GASTNet as
the teacher 3D pose estimator considering its robustness to
occlusions, and have used the novel proposed network as the
student 3D pose estimator.

IX. CONCLUSION

In this work, a novel approach for 3D pose estimation for
ice-hockey players was proposed. A teacher-student estimator
is used for 3D pose estimation which uses the pose information
from the 2D pose estimator along with the input broadcast
videos as input. Several 2D pose estimation approaches were
fine-tuned and analyzed with our custom ice-hockey dataset.
MSPN was recognized to be the most robust performing 2D
pose architecture and thus was leveraged as the 2D pose
estimator of our final architecture. GASTNet was used as
the teacher network considering its robustness to occlusions
(which is one of the most common problems in sports like ice-
hockey). For the student estimator, we have proposed a novel
architecture ’Trans-Conv’ network which incorporates sliced
convolutions to the regular Attention-FeedForward transformer
architecture. The proposed network solves the inductive bias
problem in the transformers. Pose refinement on the output
3D pose data from the teacher-student estimator was done to
refine the output data.

X. FUTURE WORKS

Through this work, we present multiple open-ended devel-
opments in both 2D and 3D pose estimation modeling. In
2D space, further works may explore using graphical models,
transformer models with tuned self-attentions, and reinforce-
ment learning-based approach to name a few. Our work can
also be extrapolated into game theory by training adversarial
agents to generate new ways of tracking poses. In 3D space,
our novel architecture can be further hyperparameter-tuned
for SOTA performance. Further, the 3D model can also be
fine-tuned with 3D groundtruth keypoints, if they are made
available for ice-hockey in the future.



Training Accuracy Training Loss Validation Accuracy

MSPN

HRNet-W48

HRNet-W32 + DARK

HRNet-W48 + TransPose

Fig. 8. Training and Validation results of accuracy and overall loss of the fine-tuned 2D pose estimator with our ice-hockey dataset.

TABLE I
TOTAL AND PER JOINT ACCURACY OF THE FINE-TUNED NETWORKS

Joint Training Accuracy(%) Validation Accuracy(%)
MSPN HRNet-W48 HRNet-W32 + DARK TransPose MSPN HRNet-W48 HRNet-W32 + DARK TransPose

Left Shoulder 97.1 95.27 95.08 91.44 90.13 86.13 86.92 85.83
Right Shoulder 96.63 95.23 95.07 91.53 89.96 86.23 86.98 84.95

Left Elbow 94.86 89.97 90.80 86.92 87.12 81.07 82.51 81.95
Right Elbow 94.91 88.33 89.52 85.53 89.03 81.69 85.96 84.00
Left Wrist 93.34 87.69 87.13 83.70 86.13 80.27 80.38 80.77

Right Wrist 92.98 86.11 84.58 81.16 86.61 81.18 82.26 82.04
Left Hip 93.76 90.52 89.07 84.78 79.38 75.69 75.04 74.80

Right Hip 94.27 90.72 88.88 84.4 79.75 75.63 78.45 79.50
Left Knee 97.19 94.38 94.70 92.59 92.39 89.54 89.25 88.27

Right Knee 97.28 94.67 94.78 92.15 92.76 89.35 90.66 80.81
Left Ankle 97.21 93.89 93.02 91.23 92.01 87.00 86.51 86.65

Right Ankle 97.40 94.18 93.92 91.4 93.70 87.48 86.19 86.93

Total accuracy 95.71 91.86 91.40 83.75 88.35 83.51 84.32 88.16
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