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MOTIVATION N

e Helps in understanding the psychological state of mind of
people.

e Used in surveillance and healthcare systems.

e Driver exhaustion observation.

e Criminal psychological analysis.

e Teaching.




PROBLEM STATEMENT Y

e Performing emotion recognition using different modes of

data.

e Using Images, videos, and EEG and ECG signals.

e Current focus is on visual data.
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LITERATURE SURVEY

e CNN based models like VGG, Resnet.

e Residual Masking Network:-

o Uses residual blocks from ResNet to encode the features of the
images.

o Uses U-Net based encoder-decoder model after every residual
block.
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LITERATURE SURVEY

e Residual Attention Network:-

o Only attention-based model.
o uses self-attention on the features extracted from them image using
a CNN.
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VISION TRANSFORMER

e input image split into different square patches and
embedded.
e encoder uses self-attention to find out the relationship

between different patches.
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WHY VISION TRANSFORMER Y

e Existing models are all mostly CNN based.
e All major models use attention on the features directly or

indirectly.

e No model uses self-attention on the input image.
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WORK DONE

IIITD&M
Kancheepuram

e Data:-
o FERO013 dataset.

o 35k images with 7 basic emotions.

o grayscale images of size (48, 48).
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e Data:-

o Highly class imbalanced.

Ground truth distribution
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IMPLEMENTING RESIDUAL MASKING NETWORK

e To understand the functioning of the masking block and the

data in hand.

e Results:-
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WORK DONE
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RESIDUAL MASKING NETWORK

e Results:-
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VISION TRANSFORMER:-

Experimented various data augmentations, initializations
and optimizers.

RandomHorizontialFlip, RandomRotation and random
erasing worked best.

SGD converged faster, but Adam gave us better
performance.

Used truncated normal distribution to initialize weights.
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WORK DONE

VISION TRANSFORMER:-

e Results:-
o Used PyTorch and the timm library for training.

o MLOps tools such as neptune and hydra for experiment

tracking.

metrics/train_ac ¥ metrics/t I ¥
axis yaxs || xaxis y-axis
Step v Linear ¥ ) Step v Linear v 2
" 2.00 =
1.00

0.800 1.50
0.600 1.00
0.400 0.500
0.200 0.00

0.00 20.0 40.0 60.0 80.0 @ 0.00 20.0 40.0 60.0 80.0 &

® metrics/train_loss AN

- metrics/train_acc AP




Nt

WORK DONE
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VISION TRANSFORMER

e Validation results:-
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WORK DONE K

DATA EFFICIENT IMAGE TRANSFORMER

Vision transformers did not give us desired result(52% val
accuracy and 54% test accuracy).
One reason:- insufficient amounts of data.

Decided to use DeiT, a modified version of VIT.

Optimized to work well for small data.
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WORK DONE

DATA EFFICIENT IMAGE TRANSFORMER

e Results:-
o All training strategies used - same as ViT except Stochastic depth.

o Optimizer - AdamW.
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DATA EFFICIENT IMAGE TRANSFORMER

e \/alidation Results:-
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WORK DONE N

CNNs vs TRANSFORMERS
e ViT and DeiT - poor performance.

e Indicates the significance of hard inductive bias given by
CNN.

e Combine advantages provided by CNN and transformers.
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WORK DONE

ConvNeXts
e Fully convolutional architecture.

e Incorporates key components from hierarchical

Swin Transformer Block

transformers.

o ‘Patchifying’ stem using non-overlapped
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WORK DONE Y

ConvNeXts

Training Details

e Used random augment, CutMix and Random erasing.
e Initialization - Truncated Normal distribution.

e Stochastic Depth and Layer Norm for regularization.

e Optimizer - AdamW.
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WORK DONE K

ConvNeXts

e Training Results:-
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ConvNeXts

e \/alidation Results:-
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Repeated Knowledge Distillation:-

‘CCE Eteacher
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EEG EMOTION RECOGNITION

EEG:-

Records the electrical activity of brain.

Fluctuations indicate sudden change in brain activity.
Evoked potentials:- averaged out signals over multiple
epochs.

Used for dlagnostlc studyk?uch as epilepsy, sleep disorder.
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WORK DONE

Data pre-processing:-
e Rejecting Noise from raw data.
o Downsampling data.
o Re-referencing data
o fourier transform(time -> frequency domain)

o Apply bandpass filter

o Independent component analysis.

e pre-processed data -> 2-dimensional images using

topography.

e Used MNE for all the operations.
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Data:-

Private dataset which is collected by ourselves of 122

subjects.

Consists of 1300 topographical maps of majorly 2

categories:- happy and not happy.
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Training and results:-

e Used basic ResNet models to create a baseline.

e No data augmentations.

e Basic regularization and initialization techniques.
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Validation Results:-
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PLAN OF ACTION Y

e Complete implementing the knowledge distillation strategy
and test it out on our dataset.

e (Collecting more data for EEG emotion recognition.

e Improving the baseline of EEG emotion recognition.
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e ResMasking Network:-
https.//ieeexplore.ieee.org/document/9411919

e Residual Attention Network:-
https://arxiv.org/pdf/2111.07224v2.pdf

e An Image is worth 16x16 words:-
https://arxiv.org/pdf/2010.11929.pdf

e Attention is all you need:-
https://arxiv.org/pdf/1706.03762.pdf

e FER2013 Dataset:-
https://www.kaggle.com/c/challenges-in-representation-lear

ning-facial-expression-recognition-challenge/data
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