
1

MultiThreaded PathTracer
OS Project

2

Overview
Path tracing is a computer graphics Monte Carlo method of rendering images of
three-dimensional scenes such that the global illumination is faithful to reality.
Fundamentally, the algorithm is integrating over all the illuminance arriving to a single
point on the surface of an object. Global Illumination (GI) is a system that models how
light is bounced off of surfaces onto other surfaces (indirect light) rather than being limited
to just the light that hits a surface directly from a light source (direct light).

We see things because light emitted by light sources such as the sun bounces off of the
surface of objects. When light rays bounce only once from the surface of an object to reach
the eye, we speak of direct illumination. But when light rays are emitted by a light source,
they can bounce off of the surface of objects multiple times before reaching the eye. This is
what we call indirect illumination because light rays follow complex paths before entering
the eye. This effect is clearly visible in the images above. Some surfaces are not exposed
directly to any light sources (often the sun), and yet they are not completely black. This is
because they still receive some light as an effect of light bouncing around from surface to
surface.

So when would you want to use global illumination? Global illumination certainly isn't going
to be the "one size fits all" way to achieving photorealistic renders in every project. For
example, you may not want it for something like a toon-style render where you'd very
specifically want to avoid indirect lighting effects. It is however, great for architectural
visualization, interior renders, scenes with direct sunlight and photorealistic renders.

Basically, you would want to use global illumination whenever light needs to interreflect (or
be cast back) and bounce multiple times over a large area in your scene. This is especially
vital when trying to make things look as realistic as possible. Using global illumination gives
you the ability to capture this indirect illumination, i.e. the real-world phenomenon where
light bounces off anything in its path until it is completely absorbed.

The complexity of global illumination in terms of tracing not only direct illumination but
also illumination from reflecting light across surfaces, coupled with its computationally
intensive and expensive nature makes it a potential candidate for exploring parallelism to
achieve better performance.

3

Goals
1. To render a hardcoded scene description illuminated by an existing light source -

from the perspective of a preset camera.

2. To investigate how varying SPP (samples per pixel) gives change in quality of
rendering with a tradeoff in performance.

Implementation
We have implemented this multi-threaded path tracer inspired by Kevin Beason’s smallpt,
but we have used just POSIX Pthreads instead of OpenMP for thread-level parallelism.

Objects defined
We have defined a Vec class object to represent vectors, and overloaded all vector
operations such as addition/subtraction, dot product, cross product and normalization.
This allows us to define a Ray class object represented by 2 vectors - as symbolized by the
ray equation . We also define a struct Sphere - characterized not only by𝑅𝑎𝑦 = 𝑜 + 𝑡𝑑
radius or position but also by color,emissivity and reflectivity of the surface. The Sphere
object also has a function to determine if an input ray intersects the Sphere at any point.
We also define the camera position using a Ray to denote direction and Vectors to define
the position. This camera defines the perspective of our rendered image.

We then enumerate the possible reflective properties :

● DIFF - Diffused, which denotes rough surfaces on which reflecting light rays are not
parallel, and therefore light reflected makes the diffused object visible to the user.

● SPEC - Spectral, which denotes polished surfaces on which reflecting light rays are
parallel, and therefore form the image that the reflecting light is forming on the
surface to the user.

● REFR - Refracting, which denotes surfaces that refract light rays instead of reflecting
them.

We then define a hardcoded description of our sample scene by defining the appropriate
Spheres - We have Spheres with INF length radii that enclose the whole frame and act as
our closed environment. We then place two sample Spheres with different reflective
properties for analysing. We also place a sphere on the top that acts as the light source. All
Spheres are coded with different colors appropriately for better illustration.

4

We also define struct args that we use to pass appropriate arguments to each thread -
since POSIX does not support direct use of defined variables in the main scope unlike
OpenMP.

Approach
We know that an image is split into constituent pixels. We further split each pixel into 4
subpixels and calculate the radiance(illumination) for each of them. We first check if the
light rays generated meet the point - if it doesn’t, we simply don’t illuminate it (it is black). If
it does, we identify which Sphere here is illuminated by the ray - it is notable that our walls,
floor and ceiling are also surfaces of Spheres. We then normalize the vector and capture
the component of the ray that is responsible for maximum reflection. We then analyse the
property of the Sphere, and illuminate accordingly. Apart from DIFF,SPEC and REFR, we also
account for TIR - Total Internal Reflection recursively.

If light rays do not diminish in an ideal environment, then how can we terminate
illumination without ending up with pure white everywhere? We do this by a method called
Russian Roulette. Russian roulette, similar to the gun-game of the same name, uses
probability to determine at what point can we terminate the illumination of the particular
ray. We terminate each ray randomly before 6 bounces, each while checking if the
maximum reflectivity component is still valid enough to continue (and stop if it becomes
negligible instead).

The radiance is based upon Monte Carlo integration, on the rendering equation so that
each sample has the same Expected Value - such that with increase in the samples per
pixel, the render becomes increasingly accurate :

With respect to the multithreading, we have used POSIX Pthreads to parallelise the
radiance calculation of each row of pixels in the rendered image. Each thread executes a
runner function that calculates the radiance for each subpixel and SPP samples for each
pixel. The resulting radiance values are finally clamped and mapped between 0 to 255 to
support hex values of displays. We have also taken a gamma factor of 2.2 to compensate
for decrease in monitor brightness.

5

Code
#include <bits/stdc++.h>

#include <stdlib.h>

#include <pthread.h>

using namespace std;

const double INF = 1e20;

// GLOBAL DEFINITION

int h = 768, w = 1024, samps; // height, width and SPP

double erand()

{

return (double)rand() / RAND_MAX;

}

// structure defining Vector

struct Vec

{

// components of the vector

double x, y, z;

// constructor for Vec

Vec(double x_ = 0, double y_ = 0, double z_ = 0)

{

x = x_;

y = y_;

6

z = z_;

}

// Vector addition

Vec operator+(const Vec &b) const

{

return (Vec(x + b.x, y + b.y, z + b.z));

}

// Vector subtraction

Vec operator-(const Vec &b) const

{

return (Vec(x - b.x, y - b.y, z - b.z));

}

// Scalar multiplication

Vec operator*(double b) const

{

return (Vec(x * b, y * b, z * b));

}

// Vector multiplication

Vec mult(const Vec &b) const

{

return (Vec(x * b.x, y * b.y, z * b.z));

}

// Dot Product

7

double dot(const Vec &b) const

{

return (x * b.x + y * b.y + z * b.z);

}

// Normalize Vector

Vec &norm()

{

return *this = *this * (1 / sqrt(x * x + y * y + z * z));

}

// Cross product

Vec operator%(const Vec &b) const

{

return Vec(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y *

b.x);

}

};

// structure defining a Ray

struct Ray

{

Vec o, d; // Ray = o + td -> o,d are constant vectors

// constructor

Ray(Vec o_, Vec d_)

{

o = o_;

8

d = d_;

}

};

// GLOBAL DECLARATION

// setting up camera position and direction

Ray cam(Vec(50, 52, 295.6), Vec(0, -0.042612, -1).norm());

Vec cx = Vec(w * .5135 / h), cy = (cx % cam.d).norm() * .5135;

// Materials used in radiance

enum Refl_t

{

DIFF,

SPEC,

REFR

};

struct Sphere

{

double rad; //radius

Vec p, e, c; //position,emission,color

Refl_t refl; //reflection type

// constructor for a sphere

Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_)

{

9

rad = rad_;

p = p_;

e = e_;

c = c_;

refl = refl_;

}

// returns distance if intersects, 0 if no intersection

double intersect(const Ray &r) const

{

// t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0 solves intersection

point of Ray and Sphere

Vec op = p - r.o;

double t, eps = 1e-4; // eps - epsilon

double b = op.dot(r.d); // 1/2 b from

quadratic equation

double det = b * b - op.dot(op) + rad * rad; // (b^2 - 4ac)/4 : a=1

because ray is normalized

if (det < 0)

{

// ray misses sphere

return 0;

}

else

{

// ray hits sphere

det = sqrt(det);

}

10

if (b - det > eps)

{

t = b - det;

}

else if (b + det > eps)

{

t = b + det;

}

else

{

t = 0;

}

return t;

}

};

// Scene definition - hardcoded -could be modified to render different

images

Sphere spheres[] = {

//Scene: radius, position, emission, color, material

Sphere(1e5, Vec(1e5 + 1, 40.8, 81.6), Vec(), Vec(.75, .25, .25), DIFF),

//Left

Sphere(1e5, Vec(-1e5 + 99, 40.8, 81.6), Vec(), Vec(.25, .25, .75),

DIFF), //Right

Sphere(1e5, Vec(50, 40.8, 1e5), Vec(), Vec(.75, .75, .75), DIFF),

//Back

11

Sphere(1e5, Vec(50, 40.8, -1e5 + 170), Vec(), Vec(), DIFF),

//Front

Sphere(1e5, Vec(50, 1e5, 81.6), Vec(), Vec(.75, .75, .75), DIFF),

//Bottom

Sphere(1e5, Vec(50, -1e5 + 81.6, 81.6), Vec(), Vec(.75, .75, .75),

DIFF), //Top

Sphere(16.5, Vec(27, 16.5, 47), Vec(), Vec(1, 1, 1) * .999, SPEC),

//Mirror

Sphere(16.5, Vec(73, 16.5, 78), Vec(), Vec(1, 1, 1) * .999, REFR),

//Glass

Sphere(600, Vec(50, 681.6 - .27, 81.6), Vec(12, 12, 12), Vec(), DIFF)

//Light

};

// alternate scene definitions can be found in

https://www.kevinbeason.com/smallpt/extraScenes.txt

// clamps value between 0 and 1

inline double clamp(double x)

{

return x < 0 ? 0 : x > 1 ? 1 : x;

}

// Maps between 0 to 255, takes gamma factor 2.2 into account

inline int toInt(double x)

{

return int(pow(clamp(x), 1 / 2.2) * 255 + .5);

}

// Checks if ray intersects the spheres

inline bool intersect(const Ray &r, double &t, int &id)

12

{

double n = sizeof(spheres) / sizeof(Sphere), d;

t = INF;

for (int i = int(n) - 1; i >= 0; i--)

{

d = spheres[i].intersect(r);

if (d > 0 && d < t)

{

t = d;

id = i;

}

}

return t < INF;

}

Vec radiance(const Ray &r, int depth)

{

double t; // distance to intersection

int id = 0; // id of intersected object

if (!(intersect(r, t, id)))

{

return Vec(); // if miss, return black

}

const Sphere &obj = spheres[id]; // hit object

13

Vec x = r.o + r.d * t, n = (x - obj.p).norm();

Vec nl;

if (n.dot(r.d) < 0)

{

nl = n;

}

else

{

nl = n * -1;

}

Vec f = obj.c;

double p = max({f.x, f.y, f.z}); // maximum reflection

if (++depth > 5)

{

if (erand() < p)

{

f = f * (1 / p);

}

else

{

return obj.e; // Russian Roulette

}

}

if (obj.refl == DIFF)

{

14

// Ideal DIFFUSE reflection

double r1 = 2 * M_PI * erand(), r2 = erand(), r2s = sqrt(r2);

Vec w = nl, u;

if (fabs(w.x) > 0.1)

{

u = Vec(0, 1) % w;

}

else

{

u = Vec(1) % w;

}

u = u.norm();

Vec v = w % u;

Vec d = (u * cos(r1) * r2s + v * sin(r1) * r2s + w * sqrt(1 -

r2)).norm();

return obj.e + f.mult(radiance(Ray(x, d), depth));

}

else if (obj.refl == SPEC)

{

// Ideal specular reflection

return obj.e + f.mult(radiance(Ray(x, r.d - n * 2 * n.dot(r.d)),

depth));

}

Ray reflRay(x, r.d - n * 2 * n.dot(r.d)); // Ideal dielectric

Refraction

15

bool into = n.dot(nl) > 0; // Check if ray is going from outside

towards inside

double nc = 1, nt = 1.5, nnt;

if (into)

{

nnt = nc / nt;

}

else

{

nnt = nt / nc;

}

double ddn = r.d.dot(nl), cos2t;

// Total Internal Reflection TIR

if ((cos2t = 1 - nnt * nnt * (1 - ddn * ddn)) < 0)

{

return obj.e + f.mult(radiance(reflRay, depth));

}

Vec tdir = (r.d * nnt - n * ((into ? 1 : -1) * (ddn * nnt +

sqrt(cos2t)))).norm();

double a = nt - nc, b = nt + nc, R0 = a * a / (b * b), c;

if (into)

{

c = 1 + ddn;

}

16

else

{

c = 1 - tdir.dot(n);

}

double Re = R0 + (1 - R0) * c * c * c * c * c, Tr = 1 - Re, P = .25 +

.5 * Re, RP = Re / P, TP = Tr / (1 - P);

if (depth > 2)

{

if (erand() < P)

{

return obj.e + f.mult(radiance(reflRay, depth) * RP);

}

else

{

return obj.e + f.mult(radiance(Ray(x, tdir), depth) * TP);

}

}

else

{

return obj.e + f.mult(radiance(reflRay, depth) * Re +

radiance(Ray(x, tdir), depth) * Tr);

}

}

// structure defining argument for appropriate passing to threads

struct args

17

{

int id;

Vec *c;

};

// mutex m;

void *runner(void *arg)

{

args *item = (args *)arg;

int y = item->id;

Vec *cc = item->c;

Vec r;

// Loop columns

for (unsigned short x = 0; x < w; x++)

{

// 2x2 subpixel rows

for (int sy = 0, i = (h - y - 1) * w + x; sy < 2; sy++)

{

for (int sx = 0; sx < 2; sx++, r = Vec())

{ // 2x2 subpixel cols

for (int s = 0; s < samps; s++)

{

double r1 = 2 * erand(), dx = r1 < 1 ? sqrt(r1) - 1 : 1

- sqrt(2 - r1);

18

double r2 = 2 * erand(), dy = r2 < 1 ? sqrt(r2) - 1 : 1

- sqrt(2 - r2);

Vec d = cx * (((sx + .5 + dx) / 2 + x) / w - .5) +

cy * (((sy + .5 + dy) / 2 + y) / h - .5) +

cam.d;

r = r + radiance(Ray(cam.o + d * 140, d.norm()), 0) *

(1. / samps);

} // Camera rays are pushed forward to start in interior

cc[i] = cc[i] + Vec(clamp(r.x), clamp(r.y), clamp(r.z)) *

.25;

}

}

}

}

int main(int argc, char const *argv[])

{

srand(time(0));

// samps -> samples

if (argc == 2)

{

samps = atoi(argv[1]) / 4;

}

else

{

samps = 1;

}

19

Vec *c = new Vec[w * h];

// setting up arguments for passing to threads

args A[h];

for (int i = 0; i < h; i++)

{

A[i].id = i;

A[i].c = c;

}

pthread_t threads[h];

// double time_;

// time_ = clock();

fprintf(stderr, "\rRendering (%d spp)\n", samps * 4);

// parallel code

// spawn threads for each row of the image

for (int i = 0; i < h; i++)

{

pthread_create(&threads[i], NULL, runner, &A[i]);

}

// join all threads spawned back to master

for (int i = 0; i < h; i++)

{

pthread_join(threads[i], NULL);

}

20

// write image to ppm file

FILE *f = fopen("Rendered_image.ppm", "w");

fprintf(f, "P3\n%d %d\n%d\n", w, h, 255);

for (int i = 0; i < w * h; i++)

{

fprintf(f, "%d %d %d ", toInt(c[i].x), toInt(c[i].y),

toInt(c[i].z));

}

// time_ = clock() - time_;

// cout << "Processor Time taken : " << (double)time_ / CLOCKS_PER_SEC

<< " seconds\n";

}

21

Outputs
It is noted that in the absence of exceedingly parallel systems like GPUs, relying solely on
CPU parallelism for rendering is computationally draining. Yet, we are able to observe a
stark contrast and increasingly superior quality in the rendered images as we increase the
SPP value on execution. To see the demo video, click here. The corresponding outputs are
attached below :

8 SPP - Render time : 1m 11sec

https://drive.google.com/file/d/1SOUnkUcFHrs2b5tmhaw9YM9KdthRPE2J/view?usp=sharing

22

20 SPP - Render time : 2m 46sec

40 SPP - Render time : 6m 9sec

23

80 SPP - Render time : 11m 27sec

200 SPP - Render time : 28m 1sec

24

Note : All testing and benchmarking was done on a Lenovo 1.6GHz i5-8th Gen machine
with 12GB RAM, running Ubuntu 18.04.

We have also rendered some alternate scene descriptions, also at 200 SPP :

25

Notice in the last image how the lack of reflective surfaces leads to lesser light bounces and
thus greatly increases the accuracy of the render. This is due to the nature of Monte Carlo
experiments wherein probabilistic accuracy is inversely proportional to the number of

26

traces in sampling (in other words, lesser light bounces lead to lesser calculations and thus
gives better and more accurate output at a lesser SPP value).

Conclusion
As we increase the SPP (samples per pixel), we are clearly able to observe the sharp
increase in the quality of the rendered image. This is because as we increase the number of
samples per pixel, we also increase the probability of our accuracy in calculating the precise
radiance of each pixel. This demonstration of variance in sampling is the fundamental idea
behind Monte Carlo experiments. The use of multithreading also enables us to perform the
computation at around (1/h) times faster - i.e (1/768) times as per our experiment where
we render a 768x384 image .

Thus, we have demonstrated the working of a multithreaded PathTracer and shown the
variance of render quality with respect to change in samples per pixel values.

